An Implicit Discontinuous Galerkin Chimera Method for Unsteady Laminar Flow Problems with Multiple Bodies

نویسندگان

چکیده

The compressible Navier-Stokes (NS) equations are spatially discretized with the discontinuous Galerkin (DG) method and an implicit backward differentiation formula of second order is used for temporal discretization. Chimera employed to realize a simple grid generation complex technical applications consisting multiple parts. Therefore, non-trivial overlapping areas could occur in numerical setup which require robust implementation method. flow around two circular cylinders tandem arrangement serves as validation case reveals promising results several configurations compared reference data literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of an Embedded Discontinuous Galerkin Method with Implicit-explicit Time-marching for Convection-diffusion Problems

In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretization methods for solving linear convection-diffusion equations. The diffusion operator is treated implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator explicitly via the upwinding discontinuous Galerkin method.

متن کامل

A Vertex-Centered Discontinuous Galerkin Method for Flow Problems

The understanding of flow problems, and finding their solution, has been important for most of human history, from the design of aqueducts to boats and airplanes. The use of physical miniature models and wind tunnels were, and still are, useful tools for design, but with the development of computers, an increasingly large part of the design process is assisted by computational fluid dynamics (C...

متن کامل

An hr–adaptive discontinuous Galerkin method for advection–diffusion problems

We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre–processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection–diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed dis...

متن کامل

An Adaptive Discontinuous Galerkin Multiscale Method for Elliptic Problems

An adaptive discontinuous Galerkin multiscale method driven by an energy norm a posteriori error bound is proposed. The method is based on splitting the problem into a coarse and fine scale. Localized fine scale constituent problems are solved on patches of the domain and are used to obtain a modified coarse scale equation. The coarse scale equation has considerably less degrees of freedom than...

متن کامل

Locally implicit discontinuous Galerkin method for time domain electromagnetics

In the recent years, there has been an increasing interest in discontinuous Galerkin time domain (DGTD) methods for the solution of the unsteady Maxwell equations modeling electromagnetic wave propagation. One of the main features of DGTD methods is their ability to deal with unstructured meshes which are particularly well suited to the discretization of the geometrical details and heterogeneou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings in applied mathematics & mechanics

سال: 2021

ISSN: ['1617-7061']

DOI: https://doi.org/10.1002/pamm.202100182